{"id":1831,"date":"2019-05-22T02:48:07","date_gmt":"2019-05-22T02:48:07","guid":{"rendered":"http:\/\/www.meetyoucarbide.com\/single-post-2018-research-progress-on-energy-storage-and-power-battery\/"},"modified":"2020-05-04T13:12:04","modified_gmt":"2020-05-04T13:12:04","slug":"2018-research-progress-on-energy-storage-and-power-battery","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/tr\/2018-enerji-depolama-ve-guc-pil-uzerine-arastirma-ilerleme\/","title":{"rendered":"2018 Enerji Depolama ve G\u00fc\u00e7 Pilinde Ara\u015ft\u0131rma Geli\u015fimi"},"content":{"rendered":"
\n
\"\"<\/p>\n

1. 1 katot malzemesi<\/h3>\n
Lithium-ion battery cathode materials are mainly divided into lithium-rich manganese-based materials, ternary composite materials, spinel-type LiMn 2 O 4 , lithium iron phosphate and lithium nickel manganese oxide. Li-rich manganese-based solid solution cathode material Li 1 + x M 1 – x O 2 (M is a transition metal such as Ni, Co and Mn) with high specific capacity (> 200 mAh\/g), high energy density, low cost and environmental protection Friendly, etc., but there are shortcomings such as low initial discharge efficiency, low coulombic efficiency, poor cycle life, unsatisfactory high temperature performance, and low rate performance. Researcher Wang Zhaoxiang from the Institute of Physics, Chinese Academy of Sciences combines experimental research with theoretical calculations. From the exploration of the driving force of Mn migration, this paper studies a series of problems caused by Mn migration and proposes a method to inhibit Mn migration. Professor Wang Xianyou of Xiangtan University started from the relationship between material structure and performance, and improved and improved by optimizing material structure, design material composition (O excess), controlling material phase composition (Co-doped) and surface modification (coated with polyaniline). The way of lithium material performance. In the coating modification, Professor Chen Zhaoyong of Changsha University of Science and Technology conducted an in-depth study: a microporous Al 2 O 3 \/PAS double-layer cladding structure was constructed on the surface of the lithium-rich manganese-based cathode material, and the cathode material was at a rate of 0.1 C. The specific capacity is up to 280 mAh\/g, and after 100 cycles at 0. 2 C, there is still 98% capacity retention and no structural transformation of the material. The research of Ni-Co-Mn ternary cathode material mainly focuses on optimizing the composition and preparation conditions, coating or doping modification, etc., in order to further improve the capacity, cycle characteristics and rate performance. The first discharge specific capacity of the first discharge specific capacity is 209. 4 mAh\/g, 1. 0 C. The first discharge specific capacity of the material is 0. 1 C mAh\/g, 1. 0 C. 7%\u3002 Capacity retention rate of 95. 5%, the capacity retention rate at high temperatures is still 87.7%. The coating material may also be LiTiO 2 , Li 2 ZrO 3 or the like, which can improve the stability of the ternary positive electrode material. Preparation of spinel LiMn 2 O 4 by solid phase combustion synthesis can reduce the reaction temperature, accelerate the reaction rate and improve the crystal structure of the product. The main methods for modifying the spinel LiMn 2 O 4 are coating and doping, such as coating ZnO, Al 2 O 3 , doping Cu, Mg and Al. The modification of lithium iron phosphate is mentioned. The methods used are element co-doping (such as vanadium ion and titanium ion), addition of ferrocene and other catalytic graphitization additives, and compounding with graphene, carbon nanotubes and the like. For lithium nickel manganate cathode materials, high temperature stability can also be improved by doping modification and coating, and improving synthesis methods and processes. Other researchers have proposed some other types of cathode materials, such as carbonyl conjugated phthalocyanine compounds, with an initial discharge specific capacity of 850 mAh\/g; graphene-mesoporous carbon\/selenium (G-MCN\/Se) ternary For the composite film positive electrode, when the selenium content was 62%, the first discharge specific capacity of 1 C was 432 mAh\/g, and remained at 385 mAh\/g after 1 300 cycles, showing good cycle stability.<\/div>\n

1.2 Anot malzemesi<\/h3>\n
Grafit malzemeleri \u015fu anda ana anot malzemeleridir, ancak ara\u015ft\u0131rmac\u0131lar di\u011fer anot malzemelerini ara\u015ft\u0131rmaktad\u0131r. Katot malzemesiyle kar\u015f\u0131la\u015ft\u0131r\u0131ld\u0131\u011f\u0131nda, anot malzemesinin belirgin bir ara\u015ft\u0131rma s\u0131cak noktas\u0131 yoktur. Elektrolit, pilin ilk d\u00f6ng\u00fcs\u00fc s\u0131ras\u0131nda bir kat\u0131 elektrolit faz aray\u00fcz\u00fc (SEI) zar\u0131 olu\u015fturmak i\u00e7in grafit anodun y\u00fczeyinde indirgeyici bir \u015fekilde ayr\u0131\u015f\u0131r, bu da ilk geri d\u00f6n\u00fc\u015f\u00fc olmayan kapasite kayb\u0131na neden olur, ancak SEI zar\u0131 elektrolitin devam etmesini engelleyebilir. Grafit y\u00fczeyinde ayr\u0131\u015f\u0131r, b\u00f6ylece elektrotu korur. Rol. G\u00fcney \u00c7in Normal \u00dcniversitesi'nden Zhang Ting, grafit anot ve elektrolit aras\u0131ndaki uyumlulu\u011fu iyile\u015ftirmek ve pilin elektrokimyasal performans\u0131n\u0131 iyile\u015ftirmek i\u00e7in SEI film olu\u015fturucu katk\u0131 maddesi olarak dimetil s\u00fclfit ekledi. Baz\u0131 ara\u015ft\u0131rmac\u0131lar, anot malzemeleri olarak nano-titanat-karbon kompozitleri kullanm\u0131\u015f ve h\u0131z performans\u0131n\u0131 ve d\u00f6ng\u00fc kararl\u0131l\u0131\u011f\u0131n\u0131 iyile\u015ftirmek i\u00e7in magnetron p\u00fcsk\u00fcrtme ile ZnO, Al203 ve di\u011fer malzemelerle kaplanm\u0131\u015ft\u0131r; sprey kurutma pirolizi Y\u00f6ntemle haz\u0131rlanan silikon-karbon kompozit anot malzemesinin ilk de\u015farj spesifik kapasitesi 1 033. 100 mA\/g ak\u0131mda 2 mAh\/g ve 77.3%'lik bir ilk \u015farj ve de\u015farj verimlili\u011fi; kendinden destekli esnek silikon\/grafen Kompozit film anot malzemesi 100 mA\/g ak\u0131mda 50 kez \u00e7evrildi, spesifik kapasite hala 1 500 mAh\/g idi ve kulombik verim 99% veya daha fazlas\u0131nda stabilize edildi. Bunun nedeni, grafen levhalar\u0131n y\u00fcksek elektriksel iletkenli\u011fe ve esnekli\u011fe sahip olmas\u0131d\u0131r.<\/div>\n

1.3 lityum iyon pil<\/h3>\n
Elektrolit Geleneksel karbonat elektrolit sisteminin yan\u0131c\u0131l\u0131k ve zay\u0131f termal kararl\u0131l\u0131k gibi sorunlar\u0131 vard\u0131r. Parlama noktas\u0131 y\u00fcksek, alev almaz, geni\u015f elektrokimyasal kararl\u0131l\u0131k penceresi ve geni\u015f s\u0131cakl\u0131k uyarlanabilirli\u011fi olan bir elektrolit sistemi geli\u015ftirir. Lityum iyon piller i\u00e7in \u00f6nemli bir malzemedir.<\/div>\n

2 NiMH pil<\/h2>\n
A research hotspot in nickel-metal hydride batteries is hydrogen storage alloy materials. Professor Guo Jin of Guangxi University believes that the rapid cooling at liquid nitrogen temperature and the non-equilibrium treatment of mechanical ball milling regulate the hydrogen storage performance of Mg 17 Al 12 alloy. Associate Professor Lan Zhiqiang of Guangxi University used the heat treatment process combined with mechanical alloying to prepare Mg 90 Li 1 – x Si x (x =0, 2, 4 and 6) composite hydrogen storage materials, and studied the addition of Si to the solid solution storage of Mg-Li system. The effect of hydrogen performance. The introduction of rare earth elements can inhibit the amorphization phenomenon and the disproportionation process of the alloy composition during the hydrogen absorption and desorption cycle, and increase the reversible hydrogen absorption and desorption of the alloy. The conventional hydrogen storage alloy materials on the market are mostly doped with rare earth elements (La). , Ce, Pr, Nd, etc.), but the price of Pr and Nd is higher. Zhu Xilin reported on the application of an AB 5 hydrogen storage alloy not doped with Pr and Nd in a nickel-hydrogen battery. The square battery applied to the electric bus has been safely operated for 100 000 km. Another research hotspot for hydrogen storage materials is metal nitrogen hydrides such as Mg(BH 2 ) 2 -2LiH, 4MgH 2 – Li 3 AlH 6 , Al-Li 3 AiH 6 and NaBH 4 -CO(NH 2 ) 2 . Reducing the particle size and adding an alkali metal additive can improve the hydrogen storage performance of the metal coordination hydrogen storage material, wherein the particle size is reduced, which is mainly achieved by high energy mechanical ball milling. The Amine-Decorated12-Connected MOF CAU-1 material reported by Professor Sun Lixian of Guilin University of Electronic Technology has excellent H 2 , CO 2 and methanol adsorption properties, which are of great significance and application value for CO 2 emission reduction and hydrogen storage. They also developed A variety of aluminum-based alloy hydrogen-generating materials, such as 4MgH 2 -Li 3 AlH 6 , Al-Li 3 AiH 6 and NaBH 4 -CO(NH 2 ) 2 , are used in combination with fuel cells.<\/div>\n

3 s\u00fcper kapasit\u00f6r<\/h2>\n
Y\u00fcksek h\u0131z performans\u0131na ve uzun \u00e7evrim \u00f6mr\u00fcne sahip elektrot malzemelerinin ara\u015ft\u0131r\u0131lmas\u0131, aralar\u0131nda g\u00f6zenekli karbon malzemeleri, biyok\u00fctle karbon malzemeleri ve karbon kompozit malzemeler gibi karbon malzemelerinin en yayg\u0131n s\u00fcper kapasit\u00f6r elektrot malzemeleri oldu\u011fu s\u00fcper kapasit\u00f6rler \u00fczerine ara\u015ft\u0131rmalar\u0131n odak noktas\u0131d\u0131r. Baz\u0131 ara\u015ft\u0131rmac\u0131lar nano g\u00f6zenekli karbon aerojel malzemeleri haz\u0131rlad\u0131lar ve iyi elektrokimyasal kapasitans \u00f6zelliklerinin \u00fc\u00e7 boyutlu a\u011f iskelet yap\u0131s\u0131ndan ve ultra y\u00fcksek spesifik y\u00fczey alan\u0131ndan geldi\u011fini kan\u0131tlad\u0131lar. Huazhong Bilim ve Teknoloji \u00dcniversitesi'nden Nie Pengru, \u00fc\u00e7 boyutlu bir g\u00f6zenekli karbon malzeme elde etti ve bunu, sitrik asit \u0131slak li\u00e7 ile at\u0131k kur\u015fun-asit pilleri geri kazanma s\u00fcrecinde s\u00fcper kapasit\u00f6rler i\u00e7in bir elektrot malzemesi olarak kulland\u0131. Bu y\u00f6ntem, enerji depolama end\u00fcstrisi ile \u00e7evre koruma end\u00fcstrisinin yak\u0131n entegrasyonunu te\u015fvik edebilir ve iyi ekolojik ve \u00e7evresel faydalar sa\u011flayabilir. Ara\u015ft\u0131rmac\u0131lar ayr\u0131ca s\u00fcper kapasit\u00f6rler i\u00e7in elektrot malzemeleri olarak farkl\u0131 biyok\u00fctle karbon malzemelerinin (sakaroz, polen, alg vb.) kullan\u0131m\u0131n\u0131 ara\u015ft\u0131rd\u0131. Kompozit malzemeler a\u00e7\u0131s\u0131ndan, ara\u015ft\u0131rmac\u0131lar sandvi\u00e7 \u015feklinde bir MoO 3 \/C kompozit malzeme tasarlad\u0131lar, \u03b1-MoO 3 katman\u0131 ve grafen katman\u0131, m\u00fckemmel elektrokimyasal \u00f6zelliklere sahip olan yatay olarak serpi\u015ftirilmi\u015f ve istiflenmi\u015ftir; grafen\/karbon kuantum nokta kompozit Malzeme, 0,5 A\/g ak\u0131mda 256 F\/g spesifik kapasitansa sahip bir elektrot malzemesi olarak da kullan\u0131labilir. Shaanxi Normal \u00dcniversitesi'nden Profes\u00f6r Liu Zonghuai, 456 m2\/g spesifik y\u00fczey alan\u0131na ve 0.25 A\/g ak\u0131mda 281 F\/g spesifik kapasitansa sahip manganez oksit nanopar\u00e7ac\u0131klar\u0131ndan bir araya getirilen mezog\u00f6zenekli bir manganez oksit nanoelektrot malzemesi haz\u0131rlad\u0131. G\u00fcney \u00c7in Teknoloji \u00dcniversitesi'nden Liu Peipei, 11 A\/g ak\u0131mda 6 F\/g spesifik kapasitansa ve kapasitans tutma oran\u0131na sahip \u00fc\u00e7 boyutlu nano-\u00e7i\u00e7ekli NiO-Co 3 O 4 kompozit malzeme haz\u0131rlad\u0131. 1.500 devir. 94. 0%; Nankai \u00dcniversitesi'nden Wang Yijing, farkl\u0131 morfolojilere sahip NiCo 2 O 4 malzemelerinin b\u00fcy\u00fcme mekanizmas\u0131n\u0131, mikro yap\u0131s\u0131n\u0131 ve performans\u0131n\u0131 inceledi. Chongqing Sanat ve Bilim \u00dcniversitesi'nden Tang Ke, e\u015fde\u011fer diren\u00e7 ve \u015farj ak\u0131m\u0131 aras\u0131ndaki ili\u015fkiyi analiz etti. E\u015fde\u011fer devre modeli, s\u00fcperkapasit\u00f6r\u00fcn ak\u0131mla kapasitans, depolama kapasitesi ve \u015farj verimlili\u011finin de\u011fi\u015fimini incelemek i\u00e7in kullan\u0131ld\u0131. S\u00fcperkapasit\u00f6r\u00fcn s\u0131cakl\u0131k depolama performans\u0131 tart\u0131\u015f\u0131ld\u0131. Darbe.<\/div>\n

4 yak\u0131t h\u00fccresi<\/h2>\n
Proton de\u011fi\u015fim membranl\u0131 yak\u0131t h\u00fccrelerinin (PEMFC) ticarile\u015ftirilmesi \u00f6ncelikle maliyet ve uzun \u00f6m\u00fcr ile s\u0131n\u0131rl\u0131d\u0131r. PEMFC'de kullan\u0131lan kataliz\u00f6r esas olarak Pt gibi asil bir metal oldu\u011fundan, maliyetlidir ve \u00e7al\u0131\u015fma ortam\u0131nda kolayca bozunur, bu da katalitik aktivitede bir azalmaya neden olur. \u00c7in Bilimler Akademisi Dalian Kimyasal Fizik Enstit\u00fcs\u00fc'nden ara\u015ft\u0131rmac\u0131 Shao Zhigang, kullan\u0131lan Pt miktar\u0131n\u0131 azaltmak ve kataliz\u00f6r\u00fcn aktivitesini art\u0131rmak i\u00e7in Pd'yi tan\u0131tan bir Pd-Pt \u00e7ekirdek-kabuk kataliz\u00f6r\u00fc bildirdi. Ek olarak, ara\u015ft\u0131rmac\u0131lar, y\u00fcksek aktivite ve y\u00fcksek stabiliteye sahip PEMFC metal oksijen indirgeme kataliz\u00f6r\u00fc elde etmek i\u00e7in polimer stabilizasyonu, y\u00fczey gruplamas\u0131 ve metal y\u00fczey karbon k\u00fcme modifikasyonu kullanarak metal ve ta\u015f\u0131y\u0131c\u0131 aras\u0131ndaki etkile\u015fimi geli\u015ftirdiler. Pekin Teknoloji Enstit\u00fcs\u00fc'nden Cao Tai, \u00fcstte kobalt nanopar\u00e7ac\u0131klar\u0131 olan tek tip, nitrojen katk\u0131l\u0131, bambu \u015fekilli karbon nanot\u00fcplerin sentezi i\u00e7in hafif, d\u00fc\u015f\u00fck maliyetli ve b\u00fcy\u00fck \u00f6l\u00e7ekli bir sentez y\u00f6ntemi tan\u0131tt\u0131. \u00dcr\u00fcnler m\u00fckemmel \u00f6zelliklere sahiptir. Redoks katalitik aktivite. Yak\u0131t pilleri i\u00e7in geleneksel platin bazl\u0131 kataliz\u00f6rlerin yerini alabilecek karbon bazl\u0131 kataliz\u00f6rler ve di\u011fer platin olmayan kataliz\u00f6rler, hidrotermal karbonizasyon, y\u00fcksek s\u0131cakl\u0131kta termal par\u00e7alama vb. ile elde edilir ve ticari platin karbon kataliz\u00f6rleriyle kar\u015f\u0131la\u015ft\u0131r\u0131labilir performansa sahiptir.<\/div>\n

5 di\u011fer piller<\/h2>\n

5. 1 sodyum iyon pil<\/h3>\n
Northeastern \u00dcniversitesi'nden Dai Kehua'da Na 0.44 MnO 2 malzemesinin \u015farj ve de\u015farj s\u00fcreci \u00e7al\u0131\u015f\u0131ld\u0131. Malzemenin y\u00fczeyinde d\u00fc\u015f\u00fck potansiyelde Mn2+ olu\u015ftu\u011fu tespit edildi. \u0130letken re\u00e7ine fenolik re\u00e7ine PFM, saf Sn tozunun geri d\u00f6n\u00fc\u015f\u00fcml\u00fc spesifik kapasitesini iyile\u015ftirebilir. Kararl\u0131 \u015farj ve de\u015farj elde etmek i\u00e7in. Zhongnan \u00dcniversitesi Xiao Zhongxing ve ark. y\u00fcksek safl\u0131kta Na 0.44 MnO 2 sentezlemek i\u00e7in hidrotermal y\u00f6ntem ve y\u00fcksek s\u0131cakl\u0131k kat\u0131 faz y\u00f6ntemi ile sinterlendi ve 0 kapasiteli d\u00fc\u011fme tipi bir pili birle\u015ftirmek i\u00e7in negatif elektrot olarak metal sodyum kullan\u0131ld\u0131. 5 C d\u00f6ng\u00fcs\u00fc 20 kez. Tutma oran\u0131 98.9% idi; Shanghai Electric Power College'dan Zhang Junxi, sodyum iyon piller i\u00e7in katot malzemesi olarak kullan\u0131lan ve iyi elektrokimyasal performansa sahip olan olivin yap\u0131s\u0131n\u0131n NaFePO 4 kristalitlerini sentezledi. Guilin Elektronik Teknolojisi \u00dcniversitesi'nden Do\u00e7ent Doktor Deng Jianqiu, hidrotermal y\u00f6ntemle nano-do\u011frusal bir stronsiyum s\u00fclfit haz\u0131rlad\u0131 ve bunu sodyum iyon piller i\u00e7in negatif elektrot malzemesi olarak kulland\u0131. Malzemenin ilk de\u015farj spesifik kapasitesi 100 mA\/g'da 552 mAh\/g'dir. 55 d\u00f6ng\u00fcden sonra kapasite tutma 85.5%'dir. 2 A\/g'de 40 kez \u00e7evrilir ve 100 mA\/'ye d\u00f6ner. g'nin ak\u0131m\u0131 ve de\u015farj\u0131n \u00f6zg\u00fcl kapasitesi 580 mAh\/g'ye geri y\u00fcklenir, bu, negatif elektrot malzemesinin d\u00f6ng\u00fc performans\u0131n\u0131n iyi oldu\u011funu g\u00f6sterir ve Yap\u0131, b\u00fcy\u00fck bir ak\u0131m d\u00f6ng\u00fcs\u00fcnden sonra sabit tutulabilir.<\/div>\n

5. 2 adet lityum-k\u00fck\u00fcrt pil<\/h3>\n
Lityum-k\u00fck\u00fcrt piller \u00fczerine ara\u015ft\u0131rmalar \u015fu anda pil g\u00fcvenli\u011fini, \u00e7evrim \u00f6mr\u00fcn\u00fc ve enerji yo\u011funlu\u011funu iyile\u015ftirmeyi ama\u00e7layan g\u00f6zenekli karbon malzemeleri, kompozit malzemeler vb. gibi elektrot malzemelerine odaklanmaktad\u0131r. \u00c7in Bilimler Akademisi Dalian Kimyasal Fizik Enstit\u00fcs\u00fc'nden Zhang Hongzhang taraf\u0131ndan geli\u015ftirilen karbon malzemesi b\u00fcy\u00fck bir g\u00f6zenek hacmine (> 4.0 cm3\/g), y\u00fcksek bir \u00f6zg\u00fcl y\u00fczey alan\u0131na (>1 500 m 2 g), ve y\u00fcksek k\u00fck\u00fcrt i\u00e7eri\u011fi (>70%). Y\u00fcksek k\u00fck\u00fcrt i\u00e7eri\u011fi (3 mg\/cm2) ko\u015fulu alt\u0131nda, 0.1 C de\u015farj\u0131n spesifik spesifik kapasitesi 1 200 mAh\/g'dir; Hainan \u00dcniversitesi'nden Profes\u00f6r Chen Yong, pozitif elektrot malzemesi olarak iki boyutlu akordeon yap\u0131s\u0131n\u0131n Ti 3 C2'sini kullan\u0131yor. S\/Ti 2C3 kompoziti elde etmek i\u00e7in k\u00fck\u00fcrt ile birle\u015fti\u011finde, ilk de\u015farj spesifik kapasitesi 200 mAh\/g ak\u0131mda 1291 mAh\/g'ye ula\u015ft\u0131 ve \u00e7evrimin tersinir spesifik kapasitesi hala 970 mAh\/g idi.<\/div>\n

5. 3 ak\u0131\u015fl\u0131 pil<\/h3>\n
\u00c7in Bilimler Akademisi Dalian Kimya ve Fizik Enstit\u00fcs\u00fc'nden ara\u015ft\u0131rmac\u0131 Zhang Huamin, s\u0131v\u0131 pil enerji depolama teknolojisinin ara\u015ft\u0131rma ilerlemesi ve uygulamas\u0131 hakk\u0131nda bir rapor verdi ve s\u0131v\u0131 pil elektroliti, flor\u00fcr olmayan iyon iletken membran ve y\u00fcksek geli\u015ftirme ilerlemesini tan\u0131tt\u0131. \u00f6zel g\u00fc\u00e7 reakt\u00f6r\u00fc. Ve ara\u015ft\u0131rma sonu\u00e7lar\u0131 ak\u0131\u015f pil sisteminde. 120 mA\/cm2 ak\u0131m yo\u011funlu\u011funda 81.2% enerji verimlili\u011fi ile \u015farj ve de\u015farj edilen, 5 MW\/10 MWh ak\u0131\u015f olmak \u00fczere b\u00fcy\u00fck \u00f6l\u00e7ekli \u00fcretime olanak sa\u011flayan 32 kW s\u0131n\u0131f\u0131 y\u00fcksek g\u00fc\u00e7 yo\u011funluklu ak\u0131\u015fl\u0131 bir ak\u00fc grubu geli\u015ftirdiler. pil Enerji depolama sistemi \u015febekede uyguland\u0131.<\/div>\n

6. Sonu\u00e7<\/h2>\n
Lityum iyon piller, s\u00fcper kapasit\u00f6rler ve yak\u0131t h\u00fccreleri, piller \u00fczerine yap\u0131lan ara\u015ft\u0131rmalar\u0131n odak noktas\u0131 olmaya devam ediyor; sodyum iyon piller, ak\u0131\u015f piller ve lityum k\u00fck\u00fcrt piller gibi di\u011fer piller de geli\u015fmektedir. \u00c7e\u015fitli pil t\u00fcrlerinin mevcut ara\u015ft\u0131rma oda\u011f\u0131, daha y\u00fcksek kapasite, verimlilik, \u00e7evrim performans\u0131 ve g\u00fcvenlik performans\u0131 elde etmek i\u00e7in hala elektrot malzemeleri geli\u015ftirmektir.<\/div>\n
T\u00fcm kat\u0131 elektrolit malzemelerine giri\u015f<\/div>\n